Efficient computable error bounds for discontinuous Galerkin approximations of elliptic problems

نویسندگان

  • S. I. Repin
  • S. Tomar
  • S. K. Tomar
چکیده

We present guaranteed and computable both sided error bounds for the discontinuous Galerkin (DG) approximations of elliptic problems. These estimates are derived in the full DG-norm on purely functional grounds by the analysis of the respective differential problem, and thus, are applicable to any qualified DG approximation. Based on the triangle inequality, the underlying approach has the following steps for a given DG approximation: (1) computing a conforming approximation in the energy space using the Oswald’s interpolation operator, and (2) application of the existing functional a posteriori error estimates to the conforming approximation. Various numerical examples with varying difficulty in computing the error bounds, from simple problems of polynomial type analytic solution to problems with analytic solution having sharp peaks, or problems with jumps in the coefficients of the partial differential equation operator, are presented which confirm the efficiency and robustness of the estimates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional a Posteriori Error Estimates for Discontinuous Galerkin Approximations of Elliptic Problems

In this paper, we develop functional a posteriori error estimates for DG approximations of elliptic boundary-value problems. These estimates are based on a certain projection of DG approximations to the respective energy space and functional a posteriori estimates for conforming approximations (see [30, 31]). On these grounds we derive two-sided guaranteed and computable bounds for the errors i...

متن کامل

Energy Norm a Posteriori Error Estimation of Hp - Adaptive Discontinuous Galerkin Methods for Elliptic Problems

In this paper, we develop the a posteriori error estimation of hp-version interior penalty discontinuous Galerkin discretizations of elliptic boundary-value problems. Computable upper and lower bounds on the error measured in terms of a natural (mesh-dependent) energy norm are derived. The bounds are explicit in the local mesh sizes and approximation orders. A series of numerical experiments il...

متن کامل

A Posteriori Error Control for Discontinuous Galerkin Methods for Parabolic Problems

We derive energy-norm a posteriori error bounds for an Euler timestepping method combined with various spatial discontinuous Galerkin schemes for linear parabolic problems. For accessibility, we address first the spatially semidiscrete case, and then move to the fully discrete scheme by introducing the implicit Euler timestepping. All results are presented in an abstract setting and then illust...

متن کامل

A-posteriori error analysis of hp-version discontinuous Galerkin finite element methods for second-order quasilinear elliptic problems

We develop the a-posteriori error analysis of hp-version interior-penalty discontinuous Galerkin finite element methods for a class of second-order quasilinear elliptic partial differential equations. Computable upper and lower bounds on the error are derived in terms of a natural (mesh-dependent) energy norm. The bounds are explicit in the local mesh size and the local degree of the approximat...

متن کامل

Multiplicative Schwarz Methods for Discontinuous Galerkin Approximations of Elliptic Problems

In this paper we introduce and analyze some non-overlapping multiplicative Schwarz methods for discontinuous Galerkin (DG) approximations of elliptic problems. The construction of the Schwarz preconditioners is presented in a unified framework for a wide class of DG methods. For symmetric DG approximations we provide optimal convergence bounds for the corresponding error propagation operator, a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008